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ABSTRACT

Overshooting of turbulent motions from convective regions into adjacent stably stratified zones plays

a significant role in stellar interior dynamics as this process may lead to mixing of chemical species,

and contribute to the transport of angular momentum and magnetic fields. We present a series of fully

non-linear, three-dimensional (3D) anelastic simulations of overshooting convection in a spherical shell

which are focused on the dependence of the overshooting dynamics on the density stratification and the

rotation, both key ingredients in stars which however have not been studied systematically together via

global simulations. We demonstrate that the overshoot lengthscale is not simply a monotonic function

of the density stratification in the convective region but instead, it depends on the ratio of the density

stratifications in the two zones. Additionally, we find that the overshoot lengthscale decreases with

decreasing Rossby number Ro and scales as Ro0.23 while it also depends on latitude with higher Rossby

cases leading to a weaker latitudinal variation. We examine the mean flows arising due to rotation and

find that they extend beyond the base of the convection zone into the stable region. Our findings may

provide a better understanding of the dynamical interaction between stellar convective and radiative

regions, and motivate future studies particularly related to the solar tachocline and the implications

of its overlapping with the overshoot region.

1. INTRODUCTION

The dynamical interaction of convectively unstable zones (CZ) with stably stratified radiative zones (RZ) has been

a crucial yet still poorly understood problem in the astrophysical context, despite the fact that such regions exist

side-by-side in almost every star and across many evolutionary phases. The boundaries between such stellar regions

are not impenetrable, allowing turbulent convective motions generated in the convectively unstable layer to travel

into the adjacent stable regions through inertia. This process, termed “overshooting”, has substantial implications

for stellar evolution as it can lead to changes in stellar surface element abundances and differential rotation through

the mixing of chemical species and the transport of angular momentum (see e.g., Pinsonneault 1997; Baraffe et al.

2017). It may also alter the thermal stratification of the radiative zone, converting a portion of it into an adiabatic

region that forms an extended CZ, in which case the process is usually termed “penetration” (Zahn et al. 1982; Zahn

1991). Furthermore, overshooting can advect magnetic fields from the CZ into the RZ via turbulent pumping (see

e.g., Tobias et al. 2001; Korre et al. 2021), and may lead to the establishment of an interface dynamo at the base of

the solar convection zone (Parker 1993; Charbonneau & MacGregor 1997).
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1.1. Previous Studies of Non-rotating Overshooting/Penetrative Convection

There exists a large body of astrophysical literature on the topic of convective overshooting. Early studies were

performed using modal expansions (e.g., Latour et al. 1976; Toomre et al. 1976; Latour et al. 1981) or within the

context of mixing-length theory (see, for instance Shaviv & Salpeter 1973; Maeder 1975). However, as discussed

in Renzini (1987), there were many inconsistencies among the results of the mixing-length theory studies due to

their sensitivity to the underlying model assumptions. As a result, convective overshooting research came to rely on

alternative, more sophisticated approaches, ranging from early modal-expansion models to modern, fully non-linear

computational models. These studies have been mainly focused on (1) the variation of the lengthscales associated

with the overshooting motions in response to stellar parameters/properties and (2) the degree to which overshooting

convection modifies the stable background stratification (thermal mixing) and the parameters under which it manages

to turn part of it into an adiabatic layer (penetrative convection).

Early work focused on penetrative convection was performed by Zahn et al. (1982), who employed a modal expansion

approach to study overshooting in a Boussinseq system and found substantial penetration within the stable region.

The effects of background density stratification were later included in the study of Massaguer et al. (1984) who

demonstrated that increasing stratification in the CZ may lead to larger penetration lengthscales due to the enhanced

flow asymmetries arising from compressibility effects. Scaling arguments have also been applied, as in Zahn (1991)

who identified two dynamical regimes of interest below the base of the convective region: a penetrative layer for

high Péclet numbers and a thermal adjustment (overshoot) layer for low Péclet numbers (where the Péclet number

characterizes the strength of thermal advection relative to thermal diffusion). The existence of these two regimes

was subsequently confirmed through the application of 2D, fully non-linear simulations carried out in Cartesian and

cylindrical geometries (e.g., Hurlburt et al. 1986, 1994; Rogers & Glatzmaier 2005; Rogers et al. 2006).

One of the first systematic studies of overshooting/penetrative convection via fully non-linear simulations was that of

Hurlburt et al. (1994) (also see Hurlburt et al. 1986) who performed 2D Cartesian compressible calculations. That study

explored the dependence of overshooting on the so-called stiffness parameter, a measure of the degree of relative stability

of the RZ compared with the CZ. It also identified two scaling regimes, consistent with the findings of Zahn (1991),

and showed that the penetrative regime was associated with lower stiffness parameters and larger penetration depths

while the overshoot regime was related to higher stiffness parameters and possessed smaller overshoot lengthscales.

These results have largely been confirmed within the context of fully non-linear 3D simulations. Studies carried out

in both Cartesian and spherical geometries have demonstrated that the overshoot lengthscale decreases with increasing

stiffness parameter (Brummell et al. 2002; Korre et al. 2019). However, as noted in Korre et al. (2019), the transition

width between the CZ and the RZ also appears to play an important role in determining the amount of overshooting

below the base of the convective region. Interestingly, these 3D studies did not identify pure penetration, namely the

extension of the CZ further down into the stable RZ, but instead, they only observed partial thermal mixing in the

RZ, associated with the stronger downflows.

This lack of pure penetration may be attributed to the lower filling factor of the plumes for 3D simulations relative

to 2D simulations when run in otherwise similar parameter regimes (for more on this, see e.g., Brummell et al.

2002; Rempel 2004). It may also result from the tendency of the overshoot lengthscale and degree of penetration to be

established by strongest downflows (see e.g., Pratt et al. 2017; Korre et al. 2019). Both the strength of these downflows

and the Péclet numbers achieved in simulations are explicitly dependent on the degree of thermal forcing as expressed

through a Rayleigh number. The dependence of the overshoot lengthscale on the Rayleigh number has been explored

in several studies (see Brummell et al. 2002; Rogers & Glatzmaier 2005; Korre et al. 2019), but different scalings

were observed, possibly due to the different set-up configurations, geometries, and boundary conditions. Large density

stratification, which enhances the asymmetry between upflows and downflows, may also lead to stronger overshooting

and eventually an adiabatic penetrative layer within the RZ. This effect was discussed in Massaguer et al. (1984), but

has yet to be investigated systematically via fully non-linear, 3D global simulations.

1.2. The Effects of Rotation

Relatively few studies have explicitly examined the response of overshooting to the presence of rotation. While the

details vary, these studies suggest that the overshooting depth δ decreases with decreasing Rossby number Ro (where

Ro expresses the relative strength of inertial to Coriolis forces). Cartesian studies carried out in a rotating f -plane by

Brummell et al. (2002) found that, for a limited range of Ro, δ ∝ Ro0.15. Similar results were reported by Pal et al.

(2007) who found that δ ∝ Ro0.2 at the poles and δ ∝ Ro0.4 at mid-latitudes. Augustson & Mathis (2019) recently
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presented a model of rotating overshooting convection which employs the semi-analytical model of Zahn (1991) and

estimated the scaling of the overshoot depth with the Rossby number. They also found that δ decreases with decreasing

Rossby number like δ ∝ Ro0.3.

Overshooting in the Sun is thought to play a role in many aspects of the global flows and magnetic fields. For

instance, temperature variations arising from rotating convective overshoot are thought to be responsible for inducing

a thermal wind in the convection zone that leads to the observed tilt of differential rotation contours (Kitchatinov &

Ruediger 1995; Rempel 2005; Miesch et al. 2006; Howe 2009). Moreover, overshooting may pump magnetic field into

the solar tachocline region where it can be stretched into large-scale toroidal field. As a result, the tachocline has

been the presumed seat of the solar dynamo for some time, figuring particularly prominently in the flux-transport and

interface class of dynamo models (e.g., Parker 1993; Dikpati & Charbonneau 1999; Rempel 2006).

For these reasons, a region of overshoot has been included in several 3D models of stellar convection. This includes

studies within the solar context (e.g., Ghizaru et al. 2010; Racine et al. 2011; Brun et al. 2011; Guerrero et al. 2013,

2016; Augustson et al. 2015), as well as others related to more massive stars (e.g., Browning et al. 2004; Brun et al. 2005;

Featherstone et al. 2009; Augustson et al. 2012, 2016). Throughout those studies, however, the region of overshoot

was but one ingredient in numerical experiments targeting other aspects of the convection and its resulting dynamo.

For instance, Brun et al. (2017) studied solar-like overshooting convection but mostly focused on the mean flows

arising within different rotational regimes and the dependence of overshooting on stellar mass (also see Brun et al.

2011; Augustson et al. 2012). A systematic study of the effects of rotation on the convective overshooting dynamics,

however, has yet to be performed in 3D global numerical calculations.

In this work, we use fully non-linear 3D models of stratified convection in a spherical shell geometry to examine

the dependence of convective overshooting on strong density stratification. We also develop scaling laws that describe

the overshoot lengthscale with Rossby number and investigate the properties of angular momentum transport and

meridional flow in the coupled CZ-RZ system. The paper is organized as follows. In Section 2, we describe our two-

layered model formulation and provide the set of anelastic Navier-Stokes equations along with the initial conditions,

and the boundary conditions used in our simulations. In Section 3, we present our results associated with the effect

of the density stratification on the non-rotating overshooting dynamics. In Section 4, we study the dynamics related

to the effect of rotation on the turbulent convective overshooting motions, as well as the dependence of the overshoot

lengthscale on the Rossby number and on latitude. In Section 5, we focus on the rotational profiles arising at different

Rossby numbers, the associated mean flows and the angular momentum transport and balances within the convection

zone and the overshoot region. Finally, in Section 6, we summarize our results, provide comparisons with previous

work, and discuss the implications of these results in the solar context.

2. MODEL FORMULATION

2.1. Dimensional Equations

We aim to explore the dynamics associated with a two-zone system that consists of a convectively unstable region

that lies above a stably stratified radiative zone. For all cases presented in this work, we use a fixed aspect ratio

ri/ro = 0.45 where ri is the inner radius and ro is the outer radius of the spherical shell. Also, we assume that the

convective region has a fixed depth L = ro− rc = 0.2408ro, where rc = 0.7592ro is the radius at the bottom of the CZ.

Our chosen depth L corresponds to the solar convection zone from ∼ 0.7187R� to ∼ 0.9467R�, hence only accounting

for its inner part and not the outer layers where radiative transfer processes take place. We are interested in the

dynamics within deep stellar interiors where the flows are subsonic. As such, we employ the anelastic approximation

which filters out the sound waves and assumes small perturbations of the thermodynamic variables compared with

their mean (Gough 1969; Gilman & Glatzmaier 1981). Therefore, we solve the 3D Navier-Stokes equations under the

anelastic and Lantz-Braginsky-Roberts approximations (Lantz 1992; Braginsky & Roberts 1995), the latter of which

is exact in the convection zone where the reference state is adiabatic.

Then, the dimensional Navier-Stokes equations become

∂u

∂t
+ u · ∇u + 2Ωoẑ × u =

g(r)

cp
Sr̂ −∇(P/ρ̄) +

1

ρ̄
∇ ·D, (1)

∇ · (ρ̄u) = 0, (2)
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ρ̄T̄

(
∂S

∂t
+ u · ∇S + ur

dS̄

dr

)
= ∇ · (ρ̄T̄ κ∇S) +Q+ Φ, (3)

where u = (ur, uθ, uφ) is the velocity field, P is the pressure, ρ̄ is the reference density, T̄ is the reference temperature,

dS̄/dr is the background entropy gradient, S characterizes the entropy perturbations about the reference state, Ωo is

the frame rotation rate, g(r) is the gravity (where g ∝ 1/r2), and cp is the specific heat at constant pressure. The

viscosity ν and the thermal diffusivity κ are kept constant for simplicity. The viscous stress tensor D is given by

D = 2ρ̄ν(eij −
1

3
∇ · u), (4)

and the viscous heating is denoted by

Φ = 2ρ̄ν[eijeij −
1

3
(∇ · u)2], (5)

where eij is the strain rate tensor. The internal heating term Q is proportional to the pressure such that L� =

4π
∫ ro
ri
Q(r)r2dr, where L� is the solar luminosity. As noted in Featherstone & Hindman (2016a), this profile is similar

in structure to the one established in Model S (see e.g., Christensen-Dalsgaard et al. 1996). We taper the profile using

a tanh function below the base of the CZ such that

Q(r) ∝ 1

2

(
tanh

(
r − rc
0.01rc

)
+ 1

)
(P̄ (r)− P̄ (ro)), (6)

where P̄ is the reference pressure. It satisfies Q(r) = −∇ · Frad, where Frad is the radiative flux in the system given

by

Frad(r) =
1

r2

∫ ro

r

Q(r′)r′2dr′. (7)

To close the set of equations (1)-(3), we use an equation of state given by

ρ

ρ̄
=
P

P̄
− T

T̄
=

P

γP̄
− S

cp
, (8)

assuming the ideal gas law

P̄ = <ρ̄T̄ , (9)

where ρ (T ) are the density (temperature) perturbations about the reference state, < is the gas constant, and γ = cp/cv
is the heat capacity ratio (where cv is the specific heat at constant volume).

To create our two-layered system, we can then select an appropriate dS̄/dr profile that satisfies an adiabatic poly-

tropic solution with γ = 5/3 in the convective region rc ≤ r ≤ ro and which smoothly transitions to a stably stratified

region for ri ≤ r < rc. We note however, that there are more sophisticated approaches where the two-zone system

can be created by assuming that the radiative heat flux depends on a varying (in density and temperature) thermal

conductivity profile based on either computed and tabulated opacities or on approximations such as Kramers law (see

e.g., Käpylä 2019; Käpylä et al. 2019; Viviani & Käpylä 2021).

We also specify the number of density scale-heights in the convection zone through Nρ = ln(ρ̄(rc))/ρ̄(ro)) (see

Appendix A). Then, we integrate dS̄/dr from rc inward, yielding a solution for S̄. The integration constant is

computed by matching the solution to the value of S̄ at the base of the CZ.

Using the fact that the entropy for a monatomic ideal gas is S̄ = ln(P̄ 1/γ/ρ̄), differentiating the latter with respect to

the radius, and applying the hydrostatic balance equation ∂P̄ /∂r = −ρ̄g we obtain

ρ̄

cp

dS̄

dr
+
g

γ
exp(−γS̄/cp)ρ̄(2−γ) +

dρ̄

dr
= 0, (10)

which we can solve numerically for the reference density profile ρ̄(r) given any background entropy gradient profile.
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2.2. Non-dimensional Equations

We non-dimensionalize equations (1)-(3) using the depth of the convection zone [l] = L as the lengthscale, the

viscous timescale [t] = L2/ν, and the velocity scale [u] = ν/L. Throughout the paper, we define the volume average

of a quantity q(r, θ, φ) in the CZ as

qcz =

∫ ro
rc

∫ 2π

0

∫ π
0
qr2 sin θdθdφdr∫ ro

rc

∫ 2π

0

∫ π
0
r2 sin θdθdφdr

. (11)

For the density and temperature scales, we choose [ρ] = ρ̄cz, and [T ] = T̄cz, respectively.

For the entropy perturbations S, we adopt a scaling related to the thermal energy flux F such that [S] =

LFcz/(ρ̄czT̄czκ), where F (r) =
∫ r
ri
Q(r′)r′2dr′/r2. We specify our chosen non-dimensional dS̄/dr profile in the RZ

such that
dS̄

dr
=
A

2

(
1− tanh

(
r − rb
d

))
, (12)

where A = 10, rb = 0.6453ro and d = 0.0456ro.

The non-dimensional gravity (reference density ρ̄, reference temperature T̄ ) is equivalent to the dimensional gravity

(reference density, reference temperature) divided by gcz (ρ̄cz, T̄cz). All the quantities are now non-dimensional and

the non-dimensional anelastic Navier-Stokes equations become

∂u

∂t
+ u · ∇u +

2

Ek
ẑ × u =

Ra

Pr
g(r)Sr̂ −∇(P/ρ̄) +

1

ρ̄
∇ ·D, (13)

∇ · (ρ̄u) = 0, (14)

ρ̄T̄

(
∂S

∂t
+ u · ∇S + ur

dS̄

dr

)
=

1

Pr
∇ · (ρ̄T̄∇S) +

1

Pr
Qnd +

DiPr

Ra
Φ, (15)

where Qnd = LQ/Fcz is the non-dimensional internal heating function. In Fig. 1, we show the profile of Qnd(r) against

r/ro for the run with Nρ = 3.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

Figure 1. Profile of the non-dimensional heating function Qnd against the radius r/ro for the case with Nρ = 3. The black
dashed vertical line corresponds to the base of the convective region.

We now have four non-dimensional numbers: the flux Rayleigh number Ra, the Prandtl number Pr, the Ekman number

Ek and the dissipation number Di, which are defined respectively as

Ra =
gczFczL

4

cpρ̄czT̄czκ2ν
, Pr =

ν

κ
, Ek =

ν

ΩoL2
, and Di =

gczL

cpT̄cz
. (16)
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Note that, unlike Ra, Pr and Ek, Di is not a free parameter. It depends on the chosen Nρ and accounts for the fact

that we have two energy scales – a thermal scale and a kinetic scale. Thus, Di appears in the thermal equation to

account for the viscous heating term, which is kinetic in nature.

We have run a series of 3D numerical simulations solving equations (13)-(15) using the Rayleigh code (Featherstone

& Hindman 2016a; Matsui et al. 2016; Featherstone 2018) with a chosen non-dimensional background entropy gradient

dS̄/dr as described above and shown in Figure 2.

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

RZ CZ

Figure 2. Profile of the non-dimensional background entropy gradient dS̄/dr versus r/ro. The black dashed vertical line
corresponds to the base of the convective region.

We use impenetrable and stress-free boundary conditions for the velocity. For the entropy perturbations, we assume

∂S/∂r|ri = 0 at the inner boundary to account for the fixed flux of energy generated due to the nuclear burning at

the stellar core while we fix the entropy at the outer boundary such that S|ro = 0. We note, however, that recent

studies seem to suggest that a fixed flux outer boundary condition might also be a sensible choice in the stellar context

(Matilsky et al. 2020). In all simulations, we assume a fixed Pr = 1 in order to avoid the onset of non-physical modes

known to arise in rapidly rotating anelastic convective systems for Pr < 1 (e.g., Calkins et al. 2015), while we vary Nρ,

Ra and Ek (see Table 1). Each simulation is evolved from a zero initial velocity and small-amplitude perturbations in

the entropy field until a statistically stationary and thermally relaxed state is reached.

3. EFFECT OF DENSITY STRATIFICATION ON THE NON-ROTATING OVERSHOOTING DYNAMICS

We begin by exploring the effect of the density stratification in the CZ quantified by Nρ on the overshooting dynamics

in a non-rotating spherical shell. In Fig. 3, we present snapshots of meridional slices of the radial velocity ur at Ra

= 105 for increasing values of Nρ, ranging from Nρ = 0.01 to Nρ = 4. From a visual inspection, we see that, in all

of these cases, the convective motions generated in the unstable CZ do not stop at the bottom of the CZ (marked by

the inner black line), but they travel some distance into the stable RZ which does seem to depend on Nρ, at least

qualitatively. Furthermore, we notice that for increasing values of Nρ, the velocity field becomes more asymmetrical

with narrower lanes of downflows and wider lanes of upflows. This enhanced asymmetry is a result of the corresponding

increased density stratification in the CZ. By contrast, as Nρ → 0, we are approaching the Boussinesq approximation

limit, where the density is almost constant throughout the shell. Thus, the asymmetry for lower values of Nρ is mostly

a result of the sphericity and the mixed thermal boundary conditions (e.g., Korre et al. 2017), though Anders et al.

(2020) recently showed that the latter do not substantially break the symmetry in the bulk of the convective region.

There are many different ways of examining quantitatively how far these convective motions can overshoot into

the stable region. In this work we will rely on the radial variation of the kinetic energy to estimate overshooting

lengthscales. Throughout the paper, we define the time and spherical average of a quantity q as

q̃(r) =
1

4π(t2 − t1)

∫ t2

t1

∫ 2π

0

∫ π

0

q(r, θ, φ, t) sin θdθdφdt, (17)
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Figure 3. Snapshots of meridional slices of the radial velocity ur at a selected longitude for different values of Nρ (indicated
above each panel) at Ra = 105 for the non-rotating runs. The inner black line marks the bottom of the convective region. The
convective motions overshoot into the stable region in all Nρ cases and the amount of overshooting depends on Nρ.

and the time and azimuthal average of a quantity q as

〈q(r, θ)〉 =
1

2π(t2 − t1)

∫ t2

t1

∫ 2π

0

q(r, θ, φ)dφdt, (18)

where t2 − t1 is a time interval in the simulation in a statistically stationary and thermally equilibrated state.

In Figure 4a, we plot the time- and spherically- averaged kinetic energy Ẽk(r) (where Ẽk(r) = (1/2)ρ̄(ũ2r + ũ2θ + ũ2φ))

for different Nρ values at Ra = 105. We verify what we noticed in Fig. 3, namely that Ẽk(r) is large in the CZ, but

there is also substantial kinetic energy below the base of the convective region, where the convective motions overshoot.

However, these motions do decelerate within the stable RZ, where they are no longer buoyantly driven there, and Ẽk
decreases accordingly. We notice that Ẽk acquires a half-Gaussian profile below rc, similarly to what Korre et al.

(2019) recently found in their Boussinesq convective overshooting spherical shell simulations. Indeed, this seems to be

a salient characteristic of the overshooting dynamics, independent of the approximation (here we assume the anelastic

approximation) and the model set-up employed. Using this feature, we fit a Gaussian function of the form

fG(r) = AE exp

−( r − rc√
2δGf

)2
 (19)

to the Ẽk(r) data from the bottom of the CZ rc down to the point where Ẽk(r) is well-fit by Eq. (19) and use the

computed width of this Gaussian δG = δGf/ro as an estimate of how far the turbulent convective motions overshoot

in the stable region, in an average sense (see for details Korre et al. 2019). In Figure 4b, we plot Ẽk(r) for a typical

run (with Nρ = 3) along with the fitted function fG(r) given in Eq. (19) to illustrate how well a Gaussian of this form

actually fits the numerical data with δG = 0.049 for this case.

In order to examine the dependence of the overshooting lengthscale on the density stratification, in Fig. 5, we plot δG
against Nρ and notice that δG increases with increasing Nρ for Nρ . 0.7, while it starts decreasing with increasing Nρ
for Nρ > 0.7. This result might initially seem counter-intuitive, since we would expect that the enhanced asymmetry,

which leads to narrower downflows for larger values of Nρ (as also seen in Fig. 3), would result in larger values of δG
(see for instance Massaguer et al. 1984). However, it is crucial to also consider the density stratification in the RZ

which is not the same for the different Nρ cases in our simulations. We found that the relevant quantity is the ratio

of the density stratification in the RZ over the one in the CZ, given by

Rρ =
(ρ̄(ri)/ρ̄(rc))

(ρ̄(rc)/ρ̄(ro))
, (20)

and not solely Nρ. In Figure 6a, we plot the computed δG against Rρ and find that δG decreases with decreasing

Rρ such that δG ∝ R0.36
ρ . This indicates that Rρ is a more sensible parameter for explaining our results. Indeed, the

density ratio in the CZ is explicitly associated with both the degree of asymmetry of the flow and the strength of the
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0.5 0.6 0.7 0.8 0.9 1
10-1

100

101
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10-1

100

101

102

103
a) b)

Figure 4. Time- and spherically- averaged kinetic energy profile Ẽk(r) versus r/ro at Ra = 105. The black dashed vertical
line corresponds to the base of the convective region. a) The profiles of Ẽk(r) are shown for all of the different Nρ cases. Ẽk(r)
decays as a half-Gaussian below the base of the CZ. b) Profile of Ẽk(r) along with the fitted Gaussian function fG(r) (see Eq.
(19)) below the base of the CZ for the case with Nρ = 3.

convective motions with increased stratification leading to somewhat smaller kinetic energies in the CZ1. On the other

hand, the density ratio in the RZ dictates how strongly stably stratified that region is. We thus conclude that the

overshoot lengthscale will depend on the density ratios in both the CZ and the RZ which can be described by Rρ.

Finally, in Figure 6b, we present a snapshot of the radial velocity for the case of Nρ = 3 and Ra = 105 at a chosen

longitude against r/ro and θ along with the distance down to rc − δG marked with a blue solid line to illustrate the

computed overshoot distance from the bottom of the CZ (blacked dashed line). We find that δG marks the distance

down to which the convective motions overshoot in an average sense.

0 1 2 3 4
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 5. Dependence of the computed overshoot lengthscale δG on the density stratification in the CZ Nρ at Ra = 105. The
lengthscale δG increases for Nρ . 0.7 and decreases for Nρ > 0.7 indicating a non-monotonic dependence on Nρ.

We now briefly focus on the “penetrative” dynamics associated with thermal mixing in the stable region. To do so,

we define the time- and spherically- averaged total adjusted entropy gradient profile dS̃T /dr such that

dS̃T
dr

=
dS̄

dr
+
dS̃

dr
, (21)

1 Note that the magnitude of the kinetic energy decreases somewhat with increasing Nρ due to the fact that all cases shown in Section 3 use
Ra = 105, but with increasing Nρ, the critical Rayleigh number also increases (see e.g., Jones et al. 2009; Gastine & Wicht 2012), so they
do not effectively have the exact same supercriticality.
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Figure 6. a) Dependence of δG on the ratio of the density stratification in the RZ over the one in the CZ given by the parameter
Rρ. The overshoot lengthscale is δG = 0.078R0.36

ρ . b) Snapshot of the radial velocity ur in r/ro and θ at a fixed longitude for
the Ra = 105 and Nρ = 3 run. The black dashed line indicates the bottom of the CZ, and the the blue solid line indicates the
depth down to rc − δG. The overshoot lengthscale δG characterizes remarkably well the depth in the RZ down to which the
convective motions overshoot on average.

i.e. the sum of the reference entropy gradient and the gradient of the entropy fluctuations. In Figure 7, we plot

the background reference dS̄/dr profile and compare it to the adjusted dS̃T /dr for four Nρ cases spanning a wide

range of density stratifications. We find that there is some partial thermal mixing in the RZ. Indeed, dS̃T /dr deviates

somewhat from the background dS̄/dr there and exhibits some slight dependence on Nρ. However, dS̃T /dr > 0 in all

cases, namely the CZ does not further extend into the stable zone, so no pure penetration is observed. In fact, there

appears to be a slightly subadiabatic layer near the base of the convective region. Although this is not a standard

feature in 3D overshooting simulations, it has been previously reported in the 3D compressible overshoot simulations

of Käpylä et al. (2017) for the cases where they employed a heat conduction profile, based either on a Kramers-like

opacity or a static profile of similar shape, which varied smoothly between the CZ and the RZ. Thus, we attribute the

subadiabatic layer observed in our runs to our chosen background entropy gradient profile which transitions smoothly

from the CZ down to the RZ as well as to the fact that at this Ra, the degree of buoyant driving is not sufficiently

strong to establish a fully adiabatic convective interior.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
-1

0

1

2

3

Figure 7. Time- and spherically- averaged total adjusted entropy gradient profile dS̃T /dr against r/ro for four Nρ cases
compared with the background dS̄/dr. The black dashed vertical line corresponds to the base of the convective region. The
weak partial thermal mixing in the RZ has a slight dependence on Nρ.
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Table 1. Input and output parameters of the simulations

Case Nρ Ra Ek Rar Roc Nr ×Nθ ×Nφ Ro δG Re

1 0.01 105 · · · · · · · · · 192×528×1056 · · · 0.081 44.05

2 0.1 105 · · · · · · · · · 192×528×1056 · · · 0.083 43.55

3 0.3 105 · · · · · · · · · 192×528×1056 · · · 0.090 42.44

4 0.5 105 · · · · · · · · · 192×528×1056 · · · 0.091 41.58

5 0.7 105 · · · · · · · · · 192×528×1056 · · · 0.091 40.37

6 0.9 105 · · · · · · · · · 192×528×1056 · · · 0.088 39.48

7 1 105 · · · · · · · · · 192×528×1056 · · · 0.087 39.08

8 2 105 · · · · · · · · · 192×528×1056 · · · 0.064 35.60

8a 2 105 0.001 10 0.158 192×528×1056 0.0072 0.014 14.33

8b 2 105 0.01 215.4 1.58 192×528×1056 0.2627 0.045 52.53

8c 2 105 0.1 4642 15.8 192×528×1056 1.8066 0.061 36.13

9 3 104 · · · · · · · · · 192×256×512 · · · 0.049 13.31

9a 3 104 0.01 21.5 0.5 192×256×512 0.0423 0.018 8.46

9b 3 104 0.1 464.2 5 192×256×512 0.6855 0.048 13.71

10 3 105 · · · · · · · · · 192×528×1056 · · · 0.049 33.54

10a 3 105 0.001 10 0.158 192×792×1584 0.0067 0.013 13.47

10b 3 105 0.01 215.4 1.58 192×528×1056 0.2263 0.039 45.26

10c 3 105 0.1 4642 15.8 192×528×1056 1.6991 0.049 33.98

11 3 106 · · · · · · · · · 192×1104×2208 · · · 0.048 81.20

11a 3 106 0.001 100 0.5 192×1104×2208 0.0432 0.028 86.39

11b 3 106 0.01 2154 5 192×1104×2208 0.5093 0.047 101.86

12 4 105 · · · · · · · · · 192×528×1056 · · · 0.042 31.87

Note—Columns 2− 6 indicate the input parameters, column 7 provides the resolution
and columns 8− 10 report on the output parameters for both the non-rotating and the
rotating simulations.

4. EFFECT OF ROTATION ON THE OVERSHOOTING DYNAMICS

Our work is motivated by solar-type stars, and so we are particularly interested in studying the effect of rotation on

the overshooting dynamics. The solar tachocline, for instance, coincides with the region of overshoot near the base of

the solar convection zone, and so understanding the effects of rotation within that region represents an important step

toward gaining a better understanding of the tachocline dynamics as well. In this Section, we investigate the effect

of rotation on the convective overshooting dynamics by considering a series of numerical experiments where we vary

Nρ, Ra and Ek. To categorize each case and the corresponding rotational regime, we output the Rossby number Ro

defined as

Ro =
U

2LΩ0
=

ReEk

2
, (22)

which is the ratio of inertial forces to the Coriolis force. Here, the first expression includes dimensional quantities

where U is a typical dimensional velocity in the CZ, while the second expression includes non-dimensional quantities

where Re = UL/ν is the Reynolds number extracted from the simulations (where U = urmsν/L). For the value of

urms, we adopt the total (fluctuating part and mean part) velocity averaged over the CZ and weighted by density.

Note that the Péclet number Pe is Pe=PrRe, so it is simply Pe=Re in our Pr = 1 runs.

In Table 1, we also report on the reduced Rayleigh number Rar =RaEk4/3 which is a typical measure of supercriticality

in simulations of rotating convection as well as on the convective Rossby number Roc =
√

RaEk2/(4Pr) which is a

measure of the influence of rotation on the global flows based on the input parameters Ra, Pr and Ek.

We begin by qualitatively examining the flow characteristics for models with four representative values of the resulting

Ro. In Fig. 8, we present snapshots of shell slices of the radial velocity ur close to the outer boundary of the spherical
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Figure 8. Snapshots of shell slices of the radial velocity ur at r = 0.9ro, i.e. close to the surface of the spherical shell for a) Ro
≈ 0.007 at Ra = 105 and Ek = 0.001, b) Ro ≈ 0.043 at Ra = 106 and Ek = 0.001, c) Ro ≈ 0.23 at Ra = 105 and Ek = 0.01, and
d) Ro ≈ 1.7 at Ra = 105 and Ek = 0.1. The flow becomes more aligned with the axis of rotation with decreasing values of Ro.

Figure 9. Snapshots of meridional slices of the radial velocity ur varying in r and θ at a selected longitude for four different
values of Ro with a) Ro ≈ 0.007, Ra = 105 and Ek = 0.001, b) Ro ≈ 0.043, Ra = 106 and Ek = 0.001, c) Ro ≈ 0.23, Ra = 105

and Ek = 0.01, and d) Ro ≈ 1.7, Ra = 105 and Ek = 0.1. The amount of overshooting below the base of the convection zone
seems to be decreasing with decreasing Ro.

shell at r = 0.9ro, for cases with Ro spanning values from 0.007 up to 1.7. We notice that for the highest values of Ro,

the convective flow is not significantly affected by rotation with the Ro ≈ 0.23 case exhibiting only a slight alignment

of the flow with the axis of rotation within the equatorial region. For the smaller Ro ≈ 0.043 run, the flow is more

columnar near the equator and mid-latitudes while the plumes observed closer to the poles indicate that inertia is

dominant there. For the lowest Ro case of Ro ≈ 0.007, rotation dominates the flow and leads to a purely columnar

profile at mid-latitudes and the equator, while ur is negligible at the poles.

To obtain a qualitative view of the fluid motions across the shell, we show snapshots of meridional slices of ur versus

θ and r at a fixed longitude for the same four computed Rossby numbers in Fig. 9. We observe that for the highest

Ro ≈ 1.7 case, where the Coriolis force is relatively weak, convective motions overshoot a substantial distance below

the base of the CZ. As Ro decreases to Ro ≈ 0.23, the convective motions begin to align with the axis of rotation

but still overshoot into the RZ. As Ro decreases further, convective motions increasingly align with the rotation axis,

both in the convection zone and in the region of overshoot. Moreover, from a visual inspection, we find that, at least

qualitatively, the convective motions seem to overshoot smaller distances into the RZ with decreasing Ro.

We next compute the overshoot lengthscale δG for each run, following the same process we used in Section 3.

However, for these rotating cases, we fit the Gaussian function (Eq. (19)) to the fluctuating kinetic energy profile

Ẽf (r) (where Ẽf (r) = (1/2)ρ̄[ũ2f,r + ũ2f,θ + ũ2f,φ]). This definition filters out the mean, axisymmetric flows that arise in

rotating convection. Note that u = um + uf where um is the mean, axisymmetric part of the velocity corresponding

to the larger-scale motions associated with rotation and and uf is the fluctuating part of velocity field associated with

the convective motions.

In Fig. 10, we present a plot of the values of δG along with their errorbars (arising from uncertainty in the fit)

against Ro. We note that the errorbars are quite significant in the rotationally-constrained cases of Ro << 0.01 where
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the kinetic energy profiles are not well-fit by the Gaussian below rc. There, the weak convective motions have already

begun to exponentially decay within the bulk of the CZ. Thus, we verify the qualitative behavior illustrated in Fig. 9

and find that δG decreases with decreasing Ro as δG ∝ Ro0.23.

The fact that δG decreases with decreasing Ro is somewhat expected, since the enhanced horizontal interaction

associated with rotation can lead to faster braking of the convective overshooting motions within the regimes where

the Coriolis force plays a more dominant role. There, the convective flow aligns with the rotation axis, forcing the

downflows to overshoot from an angle. Then, the intrinsically radial buoyancy braking in the RZ leads to a more

efficient halting of the overshooting motions since it only has to counteract their radial component. This can be

viewed qualitatively in Fig. 9, which clearly shows that the radial flow is more aligned with the axis of rotation for

lower values of Ro.

10-2 10-1 100
10-3

10-2

10-1

Figure 10. Dependence of the computed overshoot lengthscale δG on Rossby number Ro. Error bars associated with uncertainty
in the fit are indicated. The black line is the fitted function that describes how δG scales with respect to Ro, namely δG ∝
Ro0.23±0.072. The different colors correspond to different Ra and Nρ indicated in the upper left corner of the plot, while the
different shapes correspond to the different values of Ek (shown in the lower left corner of the plot).

More quantitatively, in Figure 11, we illustrate the dependence of the computed overshoot lengthscale δG on the

latitude θ at the same four representative Ro cases with Ro ≈ 0.007, Ro ≈ 0.043, Ro ≈ 0.23 and Ro ≈ 1.7. We find

that for Ro ≈ 1.7, δG only weakly depends on latitude, since the influence of rotation on convection is insignificant.

For the Ro ≈ 0.23 case, the Coriolis force is somewhat stronger, leading to a shallower δG overall which is larger

closer to the poles and becomes smaller at mid-latitudes where rotation becomes more dominant. For Ro ≈ 0.043, δG
is considerably larger within the polar regions while it decreases as we approach the mid-latitudes and the equator,

commensurate with the fact that the overshooting motions penetrate at an angle there due to the alignment of the

convective motions with the axis of rotation (see Fig. 9b). Finally, for the rotationally-constrained case of Ro ≈ 0.007,

we only show δG near the equator, since the extracted δG does not give meaningful results away from the equatorial

region where the convective motions are much weaker. We see that δG in this case is substantially smaller compared

with the other Ro cases.
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Figure 11. Computed overshoot lengthscale δG as a function of latitude θ for four different Ro cases. For larger values of Ro,
the latitudinal dependence of δG is weaker.

To further examine the dependence of the overshooting dynamics on Ro, in Fig. 12, we plot the time- and spherically-

averaged non-dimensional radial fluxes (multiplied by the surface area 4πr2), namely the kinetic energy flux F̃k, the

enthalpy flux F̃e, the conductive flux F̃c, and the viscous flux F̃v. These are respectively given by

F̃k(r) =
DiPr

2Ra
ρ̄(̃uru2), (23)

F̃e(r) = ρ̄(ũrT ), (24)

F̃c(r) = ρ̄T̄

(
∂̃S

∂r

)
, (25)

F̃v(r) = −DiPr

Ra
(ũ ·D)r, (26)

for the four typical Rossby cases ranging from Ro ≈ 0.007 to Ro ≈ 1.7. On the same figure, we also show the radiative

flux as given in Eq. (7) as well as the total flux

F̃tot = Frad + F̃k + F̃e + F̃c + F̃ν . (27)

We find that, compared with the lower Ro cases, the runs with Ro ≈ 1.7 and Ro ≈ 0.23 attain a substantially larger

kinetic energy flux F̃k within the CZ and the overshoot region due to the fact that convection is very weakly affected by

rotation (as also verified in Fig. 9 and Fig. 10). By contrast, in the lower Rossby case of Ro ≈ 0.043, F̃k is quite small

within the CZ while it becomes negligible at Ro ≈ 0.007 whereby rotation has dominated the dynamics. Similarly, F̃e
starts decreasing within the CZ but the enthalpy flux is still non-zero below the base of the CZ where the convective

motions overshoot. Overall, the magnitude of F̃e decreases with decreasing Ro, once again confirming that convection

becomes less efficient at larger rotation rates. Finally, F̃c increases with decreasing Ro illustrating that heat is mainly

transported by conduction once rotation becomes stronger. In all four cases however, F̃v is very small, suggesting that

viscosity does not play a dominant role in the dynamics.
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Figure 12. Profiles of the time- and spherically- averaged non-dimensional radial fluxes multiplied by the surface area 4πr2

against the radius r/ro with a) Ro ≈ 0.007 at Ra = 105 and Ek = 0.001, b) Ro ≈ 0.043 at Ra = 106 and Ek = 0.001, c) Ro
≈ 0.23 at Ra = 105 and Ek = 0.01, and d) Ro ≈ 1.7 at Ra = 105 and Ek = 0.1. The black vertical line corresponds to the base
of the convective region.

5. MEAN FLOWS AND ANGULAR MOMENTUM BALANCES

5.1. Rotational Profiles and Mean Flows

In Section 4, we focused on the fluctuating component of the kinetic energy in order to understand the dependence

of the convective overshooting motions on Ro. We now concentrate on the differential rotational profiles and the

associated dynamics within the different regimes arising at different Ro cases. We also investigate the mean flows

resulting from velocity correlations due to the presence of rotation through the Coriolis force. In Fig. 13, we present

slices of the time- and azimuthally- averaged meridional circulation streamlines with the underlying contours of the

mass flux (left panels) and differential rotation profiles (〈uφ〉/(r sin θ)) (right panels) for the four typical Ro cases.

We see that for Ro ≈ 0.007, there are two large cells in the meridional circulation within the CZ and the overshoot

region and four smaller ones close to the outer CZ boundary. All of these cells are localized at mid-latitudes and

the equator where the flow motions are the strongest (also see Fig. 9a), similarly to the differential rotation. We

notice that the equator rotates faster than the poles, but convection in this case is inhibited by rotation, so it is

in a rotationally-constrained regime. At Ro ≈ 0.043, the profile exhibits a multi-cellular flow near the equator that

propagates into the RZ particularly within the equatorial region. The differential rotation is again much stronger at

the equator and decreases at mid-latitudes and the poles in the CZ while the stable region rotates almost uniformly.
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This rotational profile is qualitatively similar to the one observed in the solar CZ, although the latter is conical and

not cylindrical as the one in this case. We will refer to this case as the “solar-like” case. At Ro ≈ 0.23, the meridional

circulation has two distinct large cells within the CZ, while the differential rotation in the CZ is now characterized

by faster rotating poles and a slower equator, and is more or less uniform in the bulk of the RZ. Hence, we will refer

to this case as “anti-solar” (e.g., Gastine et al. 2014). Finally, in the largest Ro ≈ 1.7 case, the Coriolis force is very

weak, and convection is not significantly affected by rotation. The meridional circulation consists of multiple cells and

the convection zone now rotates uniformly at a slower rate than the RZ. Overall, in all of these cases (except for the

rotationally-constrained case of Ro ≈ 0.007), there is significant propagation of the meridional circulation into the

stable layer, even beyond the overshoot region.

To understand this behavior more quantitatively, in Fig. 14, we plot the time- and spherically- averaged non-

dimensional kinetic energy related to the differential rotation ẼDR and the meridional circulation ẼMC as a function

of radius where

ẼDR(r) =
1

2
ρ̄ũ2m,φ, (28)

ẼMC(r) =
1

2
ρ̄(ũ2m,r + ũ2m,θ). (29)

In Fig. 14a, we see that the kinetic energy associated with the differential rotation ẼDR(r) is largest for the solar-like

case and the anti-solar case both in the CZ and the RZ. It becomes very small at Ro ≈ 1.7, where the rotational

influence is almost negligible, and in the lowest Ro ≈ 0.007 case where the motions are very weak overall and are

unable to redistribute angular momentum as efficiently. Moreover, in all four cases, ẼDR decreases with depth in the

CZ, but there is still considerable kinetic energy below the base of the CZ (with the exception of Ro ≈ 0.007).

As shown in Fig. 14b, the kinetic energy associated with the meridional flows ẼMC(r) decreases with decreasing Ro

in the CZ and is very small for the lowest Ro ≈ 0.007 case (both in the CZ and in the RZ) where rotation dominates

the dynamics. For the higher Ro cases, there is substantial kinetic energy in the meridional flows within the overshoot

region and part of the stable zone. This indicates that these larger-scale mean flows, although mostly generated in the

CZ, do not merely stop at the base of the convective region, but they travel deeper into the radiative zone.

5.2. Angular Momentum Transport

We now focus on the solar-like case and the anti-solar case with Ro ≈ 0.043 and Ro ≈ 0.23 respectively. We look

at the angular momentum transport and the main processes responsible for redistributing angular momentum within

the two-zone spherical shell. Following Elliott et al. (2000) and Brun et al. (2004), by taking the φ component of the

momentum equation, and assuming a statistically stationary state, averaged in time and longitude, we obtain

1

r2
∂(r2〈Fr(r, θ)〉)

∂r
+

1

r sin θ

∂(sin θ〈Fθ(r, θ)〉)
∂θ

= 0. (30)

The radial flux Fr(r, θ) and the latitudinal flux Fθ(r, θ) can be expressed non-dimensionally as

Fr(r, θ) = ρ̄r sin θ

(
uf,ruf,φ + um,rum,φ +

um,rr sin θ

Ek
+ r

∂

∂r

(
−um,φ

r

))
, (31)

and

Fθ(r, θ) = ρ̄r sin θ

(
uf,θuf,φ + um,θum,φ +

um,θr sin θ

Ek
+

sin θ

r

∂

∂θ

(
−um,φ

sin θ

))
, (32)

respectively. We can then consider the time- and azimuthal- average of the individual terms in Eq. (31) such that

Fr,R = 〈ρ̄r sin θ(uf,ruf,φ)〉, (33)

Fr,M = 〈ρ̄r sin θ(um,rum,φ)〉, (34)

Fr,C =

〈
ρ̄r sin θ

(
um,rr sin θ

Ek

)〉
, (35)

Fr,V =

〈
ρ̄r sin θ

(
−r ∂

∂r

(um,φ
r

))〉
. (36)
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Figure 13. Meridional slices illustrating the meridional circulation streamlines with underlying contours of the mass flux
±
√
〈ρ̄u2

r〉+ 〈ρ̄u2
θ〉 (blue color corresponds to clockwise motion, and red color to counter-clockwise) and the differential rotation

profiles (〈uφ〉/(r sin θ)), respectively for a), b) Ro ≈ 0.007 at Ra = 105 and Ek = 0.001, c), d) Ro ≈ 0.043 at Ra = 106 and Ek
= 0.001, e), f) Ro ≈ 0.23 at Ra = 105 and Ek = 0.01, and g), h) Ro ≈ 1.7 at Ra = 105 and Ek = 0.1.
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Figure 14. Time- and spherically- averaged non-dimensional kinetic energy in the mean flows. The black dashed vertical line
corresponds to the base of the convective region. a) Profile of the kinetic energy related to the differential rotation ẼDR(r).
ẼDR(r) is largest for the solar-like and the anti-solar cases in the CZ and the RZ. b) Profile of the kinetic energy associated
with the meridional circulation ẼMC(r) for four different values of Ro. For the three highest Ro cases, ẼMC(r) is substantially
large below the base of the CZ indicating that the mean flows propagate into the RZ.

In a similar manner, the individual terms in Eq. (32) are

Fθ,R = 〈ρ̄r sin θ(uf,θuf,φ)〉, (37)

Fθ,M = 〈ρ̄r sin θ(um,θum,φ)〉, (38)

Fθ,C =

〈
ρ̄r sin θ

(
um,θr sin θ

Ek

)〉
, (39)

Fθ,V =

〈
ρ̄r sin θ

(
− sin θ

r

∂

∂θ

(um,φ
sin θ

))〉
. (40)

Note that Equations (33) and (37) are associated with the Reynolds stresses, Equations (34) and (38) and Equations

(35) and (39) correspond to the mean flows associated with the meridional circulation and finally Equations (36) and

(40) are related to the viscous stresses.

In Fig. 15a,b, c and d we show the profiles of the latitudinal fluxes at Ro ≈ 0.043 (solar-like case). We observe that

Fθ,C is large near the equator and at mid-latitudes within the CZ. There is substantial penetration in the stable region

where the distinct cells have opposite signs commensurate with the meridional circulation profile in Fig. 13c. Angular

momentum in the convection zone and in the overshoot region seems to be dictated by the flux related to the action of

the Coriolis force on the mean meridional flows while all the other fluxes are comparatively very small. In Fig. 15e,f,g

and h, we notice that the radial flux Fr,C is again large within the CZ while it also extends further down into the

RZ transporting angular momentum mainly inward. The profile of Fr,R shows that transport by Reynolds stresses is

weak compared to the transport by Fr,C , however it does contribute to the overall angular momentum transport with

inward transport at mid-latitudes and outward transport near the equator. The flux associated with the mean flows

Fr,M is negligible, similarly to Fθ,M , while Fr,V is also small overall although it does seem to become stronger close to

the equator within the CZ where it transports angular momentum inward.

For the anti-solar case of Ro ≈ 0.23, in Figure 16c, we see that, similarly to the solar-like case, Fθ,C is dominant

within the CZ and the overshoot region, while Fθ,R, Fθ,M and Fθ,V are all much weaker (Fig. 16a,b and d). In Figure

16e,f,g and h, we notice that Fr,C is again the largest in magnitude compared with the other fluxes carrying angular

momentum outward near the equator and inward at mid-latitudes while Fr,R although not as large, is nonetheless

present within the CZ carrying angular momentum inward (except at the poles where it is too weak), similarly to the

much weaker Fr,M . Finally, Fr,V is mostly larger close to the base of the CZ within the equatorial region transporting

angular momentum in the same direction as Fr,C .

5.3. Thermal-wind Balance within the CZ and the Overshoot Region

We are interested in understanding what balances are achieved and how the mean flows are sustained in a steady

state across the two-zone spherical shell. Two dominant terms that contribute to the meridional flows are the rotational
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Figure 15. Time- and azimuthally- averaged latitudinal and radial fluxes contributing to the angular momentum transport for
the solar-like case with Ro ≈ 0.043. The fluxes associated with the Reynolds stresses are shown in panels a) and e), the ones
related to the mean flows are shown in b) and f), the ones related to the Coriolis term are shown in c) and g) and the ones
associated with the viscous stresses are shown in panels d) and h). The fluxes corresponding to the action of the Coriolis force
on the mean flows are dominant and as such we have divided them by 10 (panel c) and g)) in order to highlight the profiles of
the other weaker fluxes and examine all of them under the same colorbar.

shear associated with the differential rotation and the baroclinicity of the mean stratification. This balance, known as

thermal-wind balance, occurs when the system is in both hydrostatic and geostrophic equilibrium, namely when there

is a balance between the Coriolis force, the pressure and the gravity (see e.g., Ruediger 1989; Kitchatinov & Ruediger

1995; Rempel 2005; Miesch et al. 2006; Miesch & Hindman 2011; Acevedo-Arreguin et al. 2013). Within the anelastic

approximation, the dimensional thermal-wind equation is then given by

∂Ω2

∂z
≈ g

λrcp

∂〈S〉
∂θ

, (41)

where z = r cos θ, λ = r sin θ and Ω = Ωo + 〈uφ〉/λ is the total angular velocity. Non-dimensionally, Eq. (41) can be

expressed as
2

Ek

(
r cos θ

∂〈uφ〉
∂r

− sin θ
∂〈uφ〉
∂θ

)
︸ ︷︷ ︸

LHS

≈ Rag(r)

Pr

∂〈S〉
∂θ︸ ︷︷ ︸

RHS

, (42)

(where again 〈·〉 denotes a time- and azimuthally- averaged quantity). In Fig. 17, we examine the thermal-wind balance

for the solar-like case with Ro ≈ 0.043 and the anti-solar case with Ro ≈ 0.23. In Fig. 17a, we plot the left-hand

side term (LHS) term and right-hand-side (RHS) term of Eq. (42) at different radii from the bottom of the CZ rc
down to ∼ rc − δG for the solar-like case. The LHS term is associated with the Coriolis force and thus refers to the

inertia of the differential rotation, while the RHS term accounts for the baroclinicity of the stratification through the

latitudinal gradient of the entropy perturbations. The thermal-wind balance is satisfied within the overshoot region

for this solar-like case where LHS≈RHS in that region. In Figure 17b, we also show contours of the LHS and RHS

terms with respect to θ and r. We observe that overall, the thermal-wind balance seems to be satisfied across the

whole shell, and this is more pronounced within the equatorial region.
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Figure 16. Time- and azimuthally- averaged latitudinal and radial fluxes contributing to the angular momentum transport for
the anti-solar case with Ro ≈ 0.23. The fluxes associated with the Reynolds stresses are shown in panels a) and e), the ones
related to the mean flows are shown in b) and f), the ones related to the Coriolis term are shown in c) and g) and the ones
associated with the viscous stresses are shown in panels d) and h). The fluxes corresponding to the action of the Coriolis force
on the mean flows are dominant and as such we have divided them by 10 (panel c) and g)) in order to highlight the profiles of
the other weaker fluxes and examine all of them under the same colorbar.

Similarly, in Fig. 17c, we plot the LHS and RHS terms of Eq. (42) at all radii from the bottom of the CZ down

to ∼ rc − δG for the anti-solar case with Ro ≈ 0.23, and we see that the LHS term is somewhat larger than the RHS

term within the overshoot region, especially at mid-latitudes. Looking at Fig. 17d, we find that the LHS term is

substantially different from the RHS term especially within the convection zone, thus indicating that the thermal-wind

balance is not satisfied for the anti-solar case in the CZ, although it is somewhat sustained in the bulk of the stable

region. We note that Equation (42) essentially shows that it is possible to maintain non-cylindrical rotational profiles

(i.e. when LHS 6= 0) by accounting for latitudinal gradients of 〈S〉, but we observe no such behavior in this study.

5.4. Gyroscopic Pumping

A well-known mechanism for the generation of meridional circulation via balances in the angular momentum equation,

which had been originally extensively studied in the context of the Earth’s atmospheric circulation and has been

more recently revisited in studies of astrophysical fluid dynamics (McIntyre 2007; Garaud & Acevedo Arreguin 2009;

Garaud & Bodenheimer 2010; Wood et al. 2011; Miesch & Hindman 2011), is the so-called gyroscopic pumping. More

specifically, gyroscopic pumping is associated with the advection of angular momentum by meridional flow due to the

divergence of Reynolds stresses and viscous stresses. We now briefly explore the gyroscopic pumping balances in the

solar-like case and the anti-solar case to see whether this mechanism takes place in both of these representative runs

as well as which fluxes are dominant in maintaining it in the convective zone and the overshoot region.

Taking the zonal component φ of the momentum equation and multiplying it by λ = r sin θ, averaging over both

time and longitude and finally assuming a steady state, we obtain the conservation of angular momentum equation of

our system given by

ρ̄〈umc〉 · ∇L = −(∇ · FRS +∇ · F V S) (43)
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Figure 17. Thermal-wind balance for the solar-like and the anti-solar cases. a) Profile of the LHS part and the RHS part of
Equation (42) versus latitude θ at different radii within the overshoot region for the solar-like case with Ro ≈ 0.043 (similarly
for panel c) but for the anti-solar case with Ro ≈ 0.23). b) Meridional slices of the LHS and RHS terms illustrating the thermal-
wind balance across the whole shell for the solar-like case (similarly for panel d) but for the anti-solar case). The thermal-wind
balance is mostly satisfied across the shell for the solar-like case but is somewhat sustained only in the RZ for the anti-solar
case.

where umc = (ur, uθ) and where L = λ2Ω, which can be non-dimensionally expressed as

L = r sin θ

(
r sin θ

Ek
+ 〈uφ〉

)
. (44)

The non-dimensional transport of angular momentum due to Reynolds stresses and due to viscous stresses is given

respectively by

FRS = ρ̄r sin θ(〈uf,ruf,φ〉, 〈uf,θuf,φ〉), (45)

F V S = ρ̄

(
〈um,φ〉 sin θ − r sin θ

∂〈um,φ〉
∂r

, 〈um,φ〉 cos θ − sin θ
∂〈um,φ〉
∂θ

)
. (46)

Following Featherstone & Miesch (2015), in Figure 18a, we plot the left-hand-side term of Equation (43), i.e.

ρ̄〈umc〉 · ∇L along with the right-hand-side term −(∇ ·FRS +∇ ·F V S) at all radii from rc down to ∼ rc − δG for the

solar-like case with Ro ≈ 0.043 and find that the balance is more or less achieved within the overshoot region with

ρ̄〈umc〉 · ∇L being slightly larger than −(∇ · FRS + ∇ · F V S). In fact, by looking across the whole shell in Figure

18b, we find that, overall, Equation (43) is satisfied within the CZ and the overshoot region where the differential

rotation and the associated meridional flows are generated and advected. We note that we should not expect Eq.

(43) to be satisfied in the bulk of the radiative zone where the motions are not convectively driven and so are largely

axisymmetric. Furthermore, we notice that −∇ ·FRS seems to be dominant in the bulk of the CZ while −∇ ·F V S is

larger at lower latitudes and the equatorial region, especially close and somewhat below the bottom of the CZ.
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Figure 18. Gyroscopic pumping balances for the solar-like and the anti-solar cases. Profile of the LHS and RHS terms of
Equation (43) versus latitude θ at different radii within the overshoot region for the solar-like case with Ro ≈ 0.043 (similarly for
panel c) but for the anti-solar case with Ro ≈ 0.23). b) Meridional slices of the LHS and RHS terms illustrating the gyroscopic
pumping balance across the whole shell for the solar-like case (similarly for panel d) but for the anti-solar case). The gyroscopic
pumping balance is overall achieved within the CZ and the overshoot region for both the solar-like case and the anti-solar case.

In Fig. 18c, we show the left-hand-side and the right-hand-side terms of Eq. (43) at different radii within the

overshoot region for the anti-solar case with Ro ≈ 0.23. We observe that the gyroscopic pumping balance seems to be

satisfied within that region although there are some discrepancies between the two terms mostly close to the equator

with −(∇ ·FRS +∇ ·F V S) being somewhat larger than ρ̄〈umc〉 ·∇L. In Fig. 18d, we plot the individual terms across

the whole shell and find that the gyroscopic balance is achieved. Similarly to the solar-like case, the divergence of

the flux associated with the Reynolds stresses is dominant throughout the shell while the viscous stresses play a less

important role overall and are larger mainly at mid-latitudes and the equatorial region of the CZ.

Stars operate in a regime where viscosity is very small (with typical Prandtl numbers Pr ∼ O(10−6)), so we would

expect that the advection of the meridional flows would be due to only the divergence of the fluxes associated with the

Reynolds stresses while viscous stresses should be negligible, unlike what we see in the runs presented here. Indeed,

viscosity seems to have a fairly strong presence near the equatorial region for both the solar-like case and the anti-solar

case which would mean that we may need to consider even higher Ra runs (which are computationally much harder

to achieve) so that the viscous stresses would not need to compensate for the weaker Reynolds stresses observed at

this Ro and Ra.
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6. DISCUSSION

6.1. Summary of our Results and Comparison with Previous Studies of Overshooting Convection

We have presented the results of a series of numerical simulations in a two-zone spherical shell in order to examine

the effect of rotation and density stratification on the overshooting dynamics associated with the interaction of a

convectively unstable region overlying a stably stratified zone. Motivated by solar-type stars, we have assumed a

fixed thermal gradient boundary condition at the inner boundary, as well as the existence of an internal heat source

whose function mimics the radiative heating presented in more complicated solar models (Model S), while we have

used a fixed aspect ratio which corresponds to the inner part of the solar convective region and a large portion of the

radiative zone. We have conducted a systematic study by varying the density stratification in the CZ, the Rayleigh

number, and the Ekman number while we have assumed a fixed Prandtl number (Pr = 1). To create our two-layered

configuration, we have considered a varying background entropy gradient dS̄/dr which leads to an adiabatic CZ that

smoothly transitions into a subadiabatic RZ with a profile fixed for all of our runs – both non-rotating and rotating.

There have been many numerical studies of overshooting convection considering a convective region overlying a stably

stratified zone which, as we discussed in Section 1, have been mainly focused on the dependence of the overshooting on

the relative stability and the transition width between the two layers as well as the degree of the convective driving in the

CZ. In all of these studies, similarly to ours, they found that there is a substantial amount of overshooting δ below the

base of the convective region which depends on the input parameters, the different set-ups and geometries, or whether

they are 2D or 3D (see e.g., Hurlburt et al. 1986, 1994; Singh et al. 1998; Brummell et al. 2002; Rogers & Glatzmaier

2005; Pratt et al. 2017; Hotta 2017; Käpylä 2019; Korre et al. 2019). For instance, Hurlburt et al. (1986) reported a

value of δ = 0.67Hp, Singh et al. (1998) found that δ ranges between 0.4Hp − 0.88Hp while Brummell et al. (2002)

reported values of δ between 0.4Hp and 2Hp, where Hp is the pressure scale-height. In our runs the pressure scale-height

at the bottom of the CZ defined as Hp = −((1/P̄ (r))dP̄ (r)/dr)−1|r=rc depends on Nρ and ranges between ∼ 0.32 and

∼ 46 such that the overshoot lengthscale in terms of pressure scale-heights is 0.0074Hp ≤ δ = δGro ≤ 0.64Hp. So our

findings are similar to those reported in previous studies, especially when we consider higher Nρ cases.

We also found that the computed overshoot lengthscale δG for the non-rotating cases, which have fixed Pr and Ra,

depends on the ratio of the density stratifications in the two zones given by the parameter Rρ such that δG ∝ R0.36
ρ .

However, to the authors’ knowledge, there is no previous systematic study on the dependence of overshooting on the

density stratification as an input parameter. A notable exception is the work of Massaguer et al. (1984), who employed

the anelastic approximation in a Cartesian geometry and reported the penetration lengthscale for two different density

stratification cases while they also compared these results to a Boussinesq case. In their work, they assumed stacked

polytropes with a varying conductivity profile such that a convection zone is sandwiched between two stable layers

and studied upward and downward penetration. However, they did not perform fully non-linear 3D calculations, but

instead they used anelastic modal equations whereby they expanded the horizontal structure of the flow using one-

and two-mode hexagonal planforms in order to better resolve the vertical structure. As a result, their findings have a

strong dependence on the chosen horizontal modes and cannot capture the fully non-linear dynamics associated with
overshooting convection. Nonetheless, they found that the increased density stratification leads to larger penetration

and that the anelastic case predicts larger penetration depths than the Boussinesq case. In fact, they reported strong

pure penetration whereby the convection zone extended further down into the stable region and part of the latter

became adiabatic.

In our work, we do not observe pure penetration but rather overshooting, although there is a trend in the dS̃T /dr

profiles (see Eq. (21)) indicating that increasing the stratification along with the Rayleigh number even further might

actually result in pure penetration. This can be seen in Fig. 19, where we plot the total adjusted dS̃T /dr profile along

with dS̄/dr for the case with Nρ = 3 at three different Ra. We also notice that the slightly subadiabatic layer around

the base of the CZ (discussed in Section 3) becomes even smaller at larger Ra, where convection is more vigorous.
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Figure 19. Time- and spherically- averaged total adjusted entropy gradient profile dS̃T /dr against r/ro at Nρ = 3 for three
different Rayleigh numbers compared with the background dS̄/dr. The black vertical line corresponds to the base of the
convective region. Larger values of Ra lead to stronger partial thermal mixing in the RZ and a smaller subadiabatic layer close
to the bottom of the CZ.

Massaguer et al. (1984) also showed that the local Pe decreased with decreasing stratification which is not the case

in our fully non-linear 3D calculations where increased density stratification leads to smaller Reynolds (and Péclet

numbers) due to somewhat weaker convection at the same Ra for larger Nρ (see e.g., Jones et al. 2009).

We postulate that in a set-up where Nρ in the CZ increases but somehow the density ratio in the RZ remains the

same for all of the cases, then Rρ will be a monotonic function of Nρ and as such it can lead to larger overshoot

depths for larger values of Nρ, but that remains to be verified by simulations which account for such a two-layered

configuration.

There have been quite a few previous studies that have accounted for rotation in overshooting convective experiments.

Using 3D compressible simulations, Brummell et al. (2002) showed that the overshoot depth decreases with decreasing

Ro as a result of the braking of the vertical flows due to the horizontal interactions of the like-sign vortices as well

as the fact that the downflows penetrate at an angle in the presence of strong rotation. They reported a scaling of

δ ∝ Ro0.15 while they also showed that it depends on the latitude with the poles and the equator having larger δ.

However, their scaling was a result of only three different cases while they also used the f -plane approximation in a

Cartesian box which intrinsically cannot account for global flows. Similarly, Pal et al. (2007) found that δ decreases

with Ro with δ ∝ Ro0.2 at the poles and δ ∝ Ro0.4 at mid-latitudes. Augustson & Mathis (2019) studied overshooting

convection under the effect of rotation by building on the linearized model of Zahn (1991) and they reported that the

overshoot depth decreases like Ro0.3.

In this work, we found that δG ∝ Ro0.23 which is not that different from the predictions of these previous models,

even though we operate in a spherical geometry, using a different set-up based on the anelastic approximation. Thus,

the decrease in the amount of overshooting with increasing rotation rate seems to be a salient feature of the rotating

overshooting dynamics. Additionally, we showed that the overshoot depth depends on latitude with the solar-like case

(Ro ≈ 0.043) leading to larger overshoot depths closer to the poles and at mid-latitudes where the flow is more weakly

influenced by rotation and smaller depths near the equator where the convective motions penetrate at an angle due to

their alignment with the axis of rotation. For the anti-solar case (Ro ≈ 0.23), again the overshoot depth is larger at

higher-latitudes while it is just a bit larger close to the equator where the motions are not as much aligned with the

axis of rotation as at mid-latitudes. Possibly this is also a result of the topology of the plumes there which appear to

be more like the fly-wheeling motions described in Brummell et al. (2002). Overall when increasing Ro the latitudinal

dependence becomes weaker due to the smaller effect of the rotation on convection.

We note that other studies of anelastic overshooting convection in spherical shells (see Browning et al. 2004; Brun

et al. 2011; Augustson et al. 2012; Brun et al. 2017) showed that the overshoot lengthscale decreases with increasing

Rossby number. However, these simulations were not focused on the dependence of the overshooting dynamics on Ro,

the measure of the overshoot depth was based on the radial enthalpy flux rather than the full kinetic energy and they

were operating at lower Pe. Thus, it is not clear how to draw meaningful comparisons with the results of our study.
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Figure 20. Latitudinal dependence of the time- and azimuthally- averaged entropy perturbations (with their spherically
symmetric mean subtracted) volume-averaged within the overshoot region 〈S〉ov for the solar-like case with Ro ≈ 0.043. 〈S〉ov
does not vary substantially with latitude and exhibits a non-monotonic profile.

6.2. Implications for Overshooting in the Sun

We showed that for sufficiently small Ro, we can obtain a solar-like differential rotation with a faster equator and

slower poles in the CZ transitioning to a uniform rotation in the RZ. However, helioseismology has revealed that the

Sun also possesses a conical profile while our solutions lead to cylindrical ones.

Previous studies (e.g., Rempel 2005; Miesch et al. 2006) have shown that enforcing a strong latitudinal entropy

gradient at the base of the CZ can result in a conical differential rotation similarly to what we observe in the Sun.

Looking at the entropy profile in Fig. 3b of Miesch et al. (2006) (also see Fig.8d from Matilsky et al. (2020) who

accounted for a fixed flux outer boundary condition instead of a latitudinal entropy gradient at the inner boundary),

we notice that in the solar-like conical profiles achieved in their calculations, the entropy perturbations increase

monotonically with latitude away from the equator.

In Figure 20, we show the time- and azimuthally- averaged entropy perturbations (where we have subtracted the

spherically symmetric mean to enhance the latitudinal variations), volume-averaged within the overshoot region 〈S〉ov
versus the latitude θ for the solar-like case of Ro ≈ 0.043. We observe that 〈S〉ov is much weaker in magnitude and does

not vary substantially in latitude compared with the entropy profiles corresponding to the conical differential rotation

contours in Miesch et al. (2006). Also, despite the fact that the equatorial region is still cooler than the mid-latitudes

and the poles, the profile is non-monotonic. These previous studies only considered a convection zone and thus they

had to enforce a latitudinal entropy gradient at the inner boundary (or assume a fixed flux outer boundary condition)

to achieve the tilt of the differential rotation contours. However, in our two-zone spherical shell model set-up, a

strongly varying latitudinal entropy gradient might be obtained self-consistently with a suitable background dS̄/dr

profile. Indeed, this could result in stronger entropy gradient perturbations ∂〈S〉/∂θ in the thermally equilibrated

state which could in turn lead to non-cylindrical differential rotation profiles. This topic will be addressed in future

work.

We may attempt to provide some estimates on the solar value of the overshooting lengthscale using the results of our

study. We note, however, that such extrapolations tend to be speculative to some degree as values of many parameters

used here are very different from the solar ones. For instance, Ra� ∼ O(1020) and Pr� ∼ O(10−6) (.e.g., Ossendrijver

2003), while our models operate in a much lower Ra and much higher Pr regime.

These caveats aside, we can use the scaling relationship between δG and the ratio of the densities Rρ to estimate

the solar overshoot depth. We consider the region of the convection zone spanning from the tachocline to the base

of the granulation boundary layer (ro ≈ 0.9983R�), a region characterized by 11 e-foldings in density (e.g., Model

S; Christensen-Dalsgaard et al. 1996). Using this, and the values of the density at the base of the radiative zone at

ri ≈ 0.2R� and at the base of the CZ at rc ≈ 0.71R�, we find that Rρ ≈ 0.003. Based on our scaling of δG = 0.078R0.36
ρ

from Section 3, we estimate an overshoot lengthscale for the Sun of δG ≈ 0.0097 or, equivalently, δ = δGro ≈ 0.1Hp,

where Hp ≈ 5.7×109cm is the pressure scale-height at the base of the solar CZ extracted from Model S. This estimated

value for the solar overshoot lengthscale is similar to the estimates from other studies. For instance, Brummell et al.

(2002) used 3D compressible simulations to estimate an overshoot depth in the range 0.02Hp − 0.11Hp, while stellar



25

evolution models typically assume overshoot depth values of the order of 0.1Hp. Helioseismic studies suggest that the

upper limit for the solar overshoot depth is about 0.07Hp (see, e.g. Monteiro et al. 1994).

Carrying out a similar exercise based on Rossby number is more difficult as there is still no clear consensus on the

value of deep solar convection’s Rossby number. Estimates of convective overturning time based on the B–V color

index suggest that Ro� ∼ 0.04 (Corsaro et al. 2021), whereas Featherstone & Hindman (2016b) suggested that a value

≤ 0.01 was likely based on observed spatial scale of supergranulation. In principle, this parameter could be inferred

for the Sun through helioseismic measurements of deep convection, but attempts to do so have led to inconsistent

results (e.g., Hanasoge et al. 2012; Greer et al. 2015; Nagashima et al. 2020). Given these present uncertainties, we

refrain from using the scaling law of δG with Ro to obtain estimates of the solar overshoot lengthscale. Alternative

observational approaches, however, such as those based on inertial mode observations (Gizon et al. 2021) may shed

further light on this issue in the future.
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APPENDIX

A. POLYTROPIC BACKGROUND STATE IN THE CZ

Following the anelastic benchmark study of Jones et al. (2011), we define a polytropic background state in the CZ

with

T̄ = T̄cz, ρ̄ = ρ̄cz
n, P̄ = P̄cz

n+1, (A1)

where n is the polytropic index, and where T̄c, ρ̄c, and P̄c is the value of T̄ , ρ̄ and P̄ at the base of the CZ, respectively.

Assuming that our polytrope satisfies the hydrostatic balance given by

∂P̄

∂r
= −ρ̄g = − ρ̄GM

r2
, (A2)

where G is the gravitational constant and M is the stellar mass and defining the number of density scale-heights in

the CZ given by Nρ, we find an expression for the function z

z = a+
b

r
, (A3)

where

a =
fb

rc
, b =

2GM

5(n+ 1)cpT̄c
, (A4)

and where

f =
(rc/ro) exp(Nρ/n)− 1

1− exp(Nρ/n)
. (A5)
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